Derleme
BibTex RIS Kaynak Göster

TELOMERE LENGTH AND NUTRITION: POTENTIAL MECHANISMS

Yıl 2023, Cilt: 8 Sayı: 2, 69 - 78, 25.08.2023
https://doi.org/10.52881/gsbdergi.1220144

Öz

Telomere length is a biomarker linked to aging and altered by genetic and environmental variables. Environmental influences include nutrition, one of the most influential aspects in determining telomere length. It can cause telomere lengthening or shortening by influencing oxidation and inflammatory processes. Whole grains that are known to be anti-inflammatory, nuts, fruits and vegetables with high antioxidant content, antioxidant vitamins, minerals, and polyphenols can assist in telomere lengthening and protection. Some dietary groups and nutrients that promote inflammation and oxidation can cause telomere shortening. This review aims to investigate the relationship between nutrition and telomere length, as well as the probable mechanisms influencing telomeres. Components such as fiber and physiologically active components in whole grains, antioxidants in vegetables and fruits, and omega-3 fatty acids in fish aid to lengthen telomeres, whereas nitrate and nitrite, especially in processed meat, cause telomere shortening. Dietary elements that contribute to the maintenance of telomere length include a diet rich in fruits and vegetables, containing suitable amounts of legumes and nuts, limiting red meat consumption, and containing healthy fats.

Kaynakça

  • 1. Shay JW. At the end of the millennium, a view of the end. Nat Genet. 1999;23(4):382–3.
  • 2. Rafie N, Hamedani SG, Barak F, Safavi SM, Miraghajani M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017;71(2):151–8.
  • 3. Paul L. Diet, nutrition and telomere length. J Nutr Biochem. 2011;22(10):895–901.
  • 4. Ahmed W, Lingner J. Impact of oxidative stress on telomere biology. Differentiation. 2018;99:21–7.
  • 5. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21–e21.
  • 6. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.
  • 7. Révész D, Milaneschi Y, Verhoeven JE, Penninx BWJH. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J Clin Endocrinol Metab. 2014;99(12):4607–15.
  • 8. Salpea KD, Talmud PJ, Cooper JA, Maubaret CG, Stephens JW, Abelak K, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209(1):42–50.
  • 9. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.
  • 10. Du M, Prescott J, Kraft P, Han J, Giovannucci E, Hankinson SE, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175(5):414–22.
  • 11. Prescott J, Du M, Wong JYY, Han J, De Vivo I. Paternal age at birth is associated with offspring leukocyte telomere length in the nurses’ health study. Hum Reprod. 2012;27(12):3622–31.
  • 12. Armstrong D. Oxidative stress in applied basic research and clinical practice. Springer; 2010.
  • 13. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.
  • 14. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14(1):28.
  • 15. Lee JY, Jun NR, Yoon D, Shin C, Baik I. Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr. 2015;69(9):1048–52.
  • 16. Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91(5):1273–80.
  • 17. Mirabello L, Huang W, Wong JYY, Chatterjee N, Reding D, David Crawford E, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–13.
  • 18. Gu Y, Honig LS, Schupf N, Lee JH, Luchsinger JA, Stern Y, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Omaha). 2015;37(2):1–13.
  • 19. Hou L, Savage SA, Blaser MJ, Perez-Perez G, Hoxha M, Dioni L, et al. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Prev Biomarkers. 2009;18(11):3103–9.
  • 20. Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, et al. Diet-related telomere shortening and chromosome stability. Mutagenesis. 2012;27(1):49–57.
  • 21. Gong Y, Tian G, Xue H, Zhang X, Zhao Y, Cheng G. Higher adherence to the ‘vegetable-rich’dietary pattern is related to longer telomere length in women. Clin Nutr. 2018;37(4):1232–7.
  • 22. Harvey RA, Ferrier DR. Biochemistry. Lippincott Williams & Wilkins; 2011.
  • 23. Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J. 2013;280(14):3180–93.
  • 24. Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 2016;8(1):3.
  • 25. Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol. 2008;9(9):1–7. 26. de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.
  • 27. Srinivas N, Rachakonda S, Kumar R. Telomeres and telomere length: a general overview. Cancers (Basel). 2020;12(3):558.
  • 28. Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology (Basel). 2021;10(4):253.
  • 29. Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 2022;73:101507.
  • 30. Reichert S, Stier A. Does oxidative stress shorten telomeres in vivo? A review. Biol Lett. 2017;13(12):20170463.
  • 31. Tiryakioğlu AE, Özkan MN, Kayım S, Bağcı Ö, Çeviker K, Tatar B, ve ark.. Kanser Tanı Ve Tedavisinde Dna’ya Yönelik Güncel Yaklaşımlar: Telomeraz/Tert. Mühendislik Bilim Ve Tasarım Derg. 4(2):125–31.
  • 32. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30:11–26.
  • 33. Victorelli S, Passos JF. Telomeres and cell senescence-size matters not. EBioMedicine. 2017;21:14–20.
  • 34. Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019(1):278–84.
  • 35. Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8(27):45008.
  • 36. Song Y, You N-CY, Song Y, Kang MK, Hou L, Wallace R, et al. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women. J Nutr. 2013;143(6):907–14.
  • 37. Tiainen A-M, Männistö S, Blomstedt PA, Moltchanova E, Perälä MM, Kaartinen NE, et al. Leukocyte telomere length and its relation to food and nutrient intake in an elderly population. Eur J Clin Nutr. 2012;66(12):1290–4.
  • 38. Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs Jr DR. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12.
  • 39. Fretts AM, Howard B V, Siscovick DS, Best LG, Beresford SAA, Mete M, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8.
  • 40. Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain Behav Immun. 2013;28:16–24.
  • 41. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. Jama. 2010;303(3):250–7.
  • 42. Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. 2012;
  • 43. von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med. 2000;28(1):64–74.
  • 44. García-Cao M, O’Sullivan R, Peters AHFM, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36(1):94–9.
  • 45. Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci. 1995;92(1):258–62.
  • 46. Latre L, Tusell L, Martin M, Miró R, Egozcue J, Blasco MA, et al. Shortened telomeres join to DNA breaks interfering with their correct repair. Exp Cell Res. 2003;287(2):282–8.
  • 47. Woods DD. Symposium on Folic Acid Deficiency: The Function of Folic Acid in Cellular Metabolism. Proc R Soc Med. 1964;57(5):388–90.
  • 48. Paul L, Cattaneo M, D’Angelo A, Sampietro F, Fermo I, Razzari C, et al. Telomere length in peripheral blood mononuclear cells is associated with folate status in men. J Nutr. 2009;139(7):1273–8.
  • 49. Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63.
  • 50. Tucker LA. Serum and dietary folate and vitamin B12 levels account for differences in cellular aging: Evidence based on telomere findings in 5581 US adults. Oxid Med Cell Longev. 2019;2019.
  • 51. Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, et al. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc. 2014;62(2):222–9.
  • 52. Corina A, Rangel-Zúñiga OA, Jiménez-Lucena R, Alcalá-Díaz JF, Quintana-Navarro G, Yubero-Serrano EM, et al. Low intake of vitamin E accelerates cellular aging in patients with established cardiovascular disease: the CORDIOPREV study. Journals Gerontol Ser A. 2019;74(6):770–7.
  • 53. Furumoto K, Inoue E, Nagao N, Hiyama E, Miwa N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci. 1998;63(11):935–48.
  • 54. Tanaka Y, Moritoh Y, Miwa N. Age‐dependent telomere‐shortening is repressed by phosphorylated α‐tocopherol together with cellular longevity and intracellular oxidative‐stress reduction in human brain microvascular endotheliocytes. J Cell Biochem. 2007;102(3):689–703.
  • 55. Tucker LA. Physical activity and telomere length in US men and women: An NHANES investigation. Prev Med (Baltim). 2017;100:145–51.

TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR

Yıl 2023, Cilt: 8 Sayı: 2, 69 - 78, 25.08.2023
https://doi.org/10.52881/gsbdergi.1220144

Öz

Telomer uzunluğu yaşlanma ile ilişkili olduğu bilinen, genetik ve çevresel faktörlerden etkilenen bir biyogöstergeçtir. Telomer uzunluğunun belirlenmesinde etkili olan en önemli faktörlerden biri olan beslenme bir çevresel faktör olarak karşımıza çıkmaktadır. Oksidasyon ve inflamasyon süreçlerini etkileyerek telomerlerin uzamasına veya kısalmasına yol açabilmektedir. Anti-inflamatuvar olduğu bilinen tam tahıllar, yağlı tohumlar ile antioksidan bakımından yüksek içeriğe sahip meyveler ve sebzeler, antioksidan özelliği olan vitaminler, mineraller ve polifenoller telomerlerin uzamasına veya korunmasına yardımcı olabilirler. İnflamasyonu ve oksidasyonu arttırabilen bazı besin grupları ve besin öğeleri ise telomerlerin kısalmasına yol açabilmektedir. Bu derlemenin amacı beslenme ve telomer uzunluğunun ilişkisi ve telomerleri etkileyen potansiyel mekanizmaları incelemektir. Tam tahıllarda bulunan posa ve biyolojik aktif bileşenler, sebze ve meyvelerde bulunan antioksidanlar ve balıkta bulunan omega-3 gibi bileşenler telomerlerin uzamasına yardımcı olurken, özellikle işlenmiş ette bulunan nitrat ve nitrit gibi bileşenler telomerlerin kısalmasına yol açmaktadır. Telomer uzunluğunun diyetsel faktörler açısından korunmasında meyve ve sebzeden zengin, uygun seviyelerde kurubaklagil ve kuruyemiş içeren, kırmızı et bakımından sınırlı ve sağlıklı yağlar içeren bir diyet tüketimi oldukça önemlidir.

Kaynakça

  • 1. Shay JW. At the end of the millennium, a view of the end. Nat Genet. 1999;23(4):382–3.
  • 2. Rafie N, Hamedani SG, Barak F, Safavi SM, Miraghajani M. Dietary patterns, food groups and telomere length: a systematic review of current studies. Eur J Clin Nutr. 2017;71(2):151–8.
  • 3. Paul L. Diet, nutrition and telomere length. J Nutr Biochem. 2011;22(10):895–901.
  • 4. Ahmed W, Lingner J. Impact of oxidative stress on telomere biology. Differentiation. 2018;99:21–7.
  • 5. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21–e21.
  • 6. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.
  • 7. Révész D, Milaneschi Y, Verhoeven JE, Penninx BWJH. Telomere length as a marker of cellular aging is associated with prevalence and progression of metabolic syndrome. J Clin Endocrinol Metab. 2014;99(12):4607–15.
  • 8. Salpea KD, Talmud PJ, Cooper JA, Maubaret CG, Stephens JW, Abelak K, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209(1):42–50.
  • 9. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.
  • 10. Du M, Prescott J, Kraft P, Han J, Giovannucci E, Hankinson SE, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175(5):414–22.
  • 11. Prescott J, Du M, Wong JYY, Han J, De Vivo I. Paternal age at birth is associated with offspring leukocyte telomere length in the nurses’ health study. Hum Reprod. 2012;27(12):3622–31.
  • 12. Armstrong D. Oxidative stress in applied basic research and clinical practice. Springer; 2010.
  • 13. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.
  • 14. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14(1):28.
  • 15. Lee JY, Jun NR, Yoon D, Shin C, Baik I. Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr. 2015;69(9):1048–52.
  • 16. Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91(5):1273–80.
  • 17. Mirabello L, Huang W, Wong JYY, Chatterjee N, Reding D, David Crawford E, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–13.
  • 18. Gu Y, Honig LS, Schupf N, Lee JH, Luchsinger JA, Stern Y, et al. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age (Omaha). 2015;37(2):1–13.
  • 19. Hou L, Savage SA, Blaser MJ, Perez-Perez G, Hoxha M, Dioni L, et al. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Prev Biomarkers. 2009;18(11):3103–9.
  • 20. Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, et al. Diet-related telomere shortening and chromosome stability. Mutagenesis. 2012;27(1):49–57.
  • 21. Gong Y, Tian G, Xue H, Zhang X, Zhao Y, Cheng G. Higher adherence to the ‘vegetable-rich’dietary pattern is related to longer telomere length in women. Clin Nutr. 2018;37(4):1232–7.
  • 22. Harvey RA, Ferrier DR. Biochemistry. Lippincott Williams & Wilkins; 2011.
  • 23. Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J. 2013;280(14):3180–93.
  • 24. Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY). 2016;8(1):3.
  • 25. Xin H, Liu D, Songyang Z. The telosome/shelterin complex and its functions. Genome Biol. 2008;9(9):1–7. 26. de Lange T. Shelterin-mediated telomere protection. Annu Rev Genet. 2018;52:223–47.
  • 27. Srinivas N, Rachakonda S, Kumar R. Telomeres and telomere length: a general overview. Cancers (Basel). 2020;12(3):558.
  • 28. Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology (Basel). 2021;10(4):253.
  • 29. Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 2022;73:101507.
  • 30. Reichert S, Stier A. Does oxidative stress shorten telomeres in vivo? A review. Biol Lett. 2017;13(12):20170463.
  • 31. Tiryakioğlu AE, Özkan MN, Kayım S, Bağcı Ö, Çeviker K, Tatar B, ve ark.. Kanser Tanı Ve Tedavisinde Dna’ya Yönelik Güncel Yaklaşımlar: Telomeraz/Tert. Mühendislik Bilim Ve Tasarım Derg. 4(2):125–31.
  • 32. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30:11–26.
  • 33. Victorelli S, Passos JF. Telomeres and cell senescence-size matters not. EBioMedicine. 2017;21:14–20.
  • 34. Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019(1):278–84.
  • 35. Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8(27):45008.
  • 36. Song Y, You N-CY, Song Y, Kang MK, Hou L, Wallace R, et al. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women. J Nutr. 2013;143(6):907–14.
  • 37. Tiainen A-M, Männistö S, Blomstedt PA, Moltchanova E, Perälä MM, Kaartinen NE, et al. Leukocyte telomere length and its relation to food and nutrient intake in an elderly population. Eur J Clin Nutr. 2012;66(12):1290–4.
  • 38. Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs Jr DR. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12.
  • 39. Fretts AM, Howard B V, Siscovick DS, Best LG, Beresford SAA, Mete M, et al. Processed meat, but not unprocessed red meat, is inversely associated with leukocyte telomere length in the Strong Heart Family Study. J Nutr. 2016;146(10):2013–8.
  • 40. Kiecolt-Glaser JK, Epel ES, Belury MA, Andridge R, Lin J, Glaser R, et al. Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial. Brain Behav Immun. 2013;28:16–24.
  • 41. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. Jama. 2010;303(3):250–7.
  • 42. Kim K-A, Gu W, Lee I-A, Joh E-H, Kim D-H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. 2012;
  • 43. von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med. 2000;28(1):64–74.
  • 44. García-Cao M, O’Sullivan R, Peters AHFM, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet. 2004;36(1):94–9.
  • 45. Kruk PA, Rampino NJ, Bohr VA. DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci. 1995;92(1):258–62.
  • 46. Latre L, Tusell L, Martin M, Miró R, Egozcue J, Blasco MA, et al. Shortened telomeres join to DNA breaks interfering with their correct repair. Exp Cell Res. 2003;287(2):282–8.
  • 47. Woods DD. Symposium on Folic Acid Deficiency: The Function of Folic Acid in Cellular Metabolism. Proc R Soc Med. 1964;57(5):388–90.
  • 48. Paul L, Cattaneo M, D’Angelo A, Sampietro F, Fermo I, Razzari C, et al. Telomere length in peripheral blood mononuclear cells is associated with folate status in men. J Nutr. 2009;139(7):1273–8.
  • 49. Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. Am J Clin Nutr. 2009;89(6):1857–63.
  • 50. Tucker LA. Serum and dietary folate and vitamin B12 levels account for differences in cellular aging: Evidence based on telomere findings in 5581 US adults. Oxid Med Cell Longev. 2019;2019.
  • 51. Sen A, Marsche G, Freudenberger P, Schallert M, Toeglhofer AM, Nagl C, et al. Association between higher plasma lutein, zeaxanthin, and vitamin C concentrations and longer telomere length: results of the Austrian Stroke Prevention Study. J Am Geriatr Soc. 2014;62(2):222–9.
  • 52. Corina A, Rangel-Zúñiga OA, Jiménez-Lucena R, Alcalá-Díaz JF, Quintana-Navarro G, Yubero-Serrano EM, et al. Low intake of vitamin E accelerates cellular aging in patients with established cardiovascular disease: the CORDIOPREV study. Journals Gerontol Ser A. 2019;74(6):770–7.
  • 53. Furumoto K, Inoue E, Nagao N, Hiyama E, Miwa N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci. 1998;63(11):935–48.
  • 54. Tanaka Y, Moritoh Y, Miwa N. Age‐dependent telomere‐shortening is repressed by phosphorylated α‐tocopherol together with cellular longevity and intracellular oxidative‐stress reduction in human brain microvascular endotheliocytes. J Cell Biochem. 2007;102(3):689–703.
  • 55. Tucker LA. Physical activity and telomere length in US men and women: An NHANES investigation. Prev Med (Baltim). 2017;100:145–51.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

Neslihan Arslan 0000-0002-1232-8009

Eda Köksal 0000-0002-7930-9910

Yayımlanma Tarihi 25 Ağustos 2023
Gönderilme Tarihi 21 Aralık 2022
Kabul Tarihi 9 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 8 Sayı: 2

Kaynak Göster

APA Arslan, N., & Köksal, E. (2023). TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR. Gazi Sağlık Bilimleri Dergisi, 8(2), 69-78. https://doi.org/10.52881/gsbdergi.1220144
AMA Arslan N, Köksal E. TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR. Gazi sağlık bilim. derg. Ağustos 2023;8(2):69-78. doi:10.52881/gsbdergi.1220144
Chicago Arslan, Neslihan, ve Eda Köksal. “TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR”. Gazi Sağlık Bilimleri Dergisi 8, sy. 2 (Ağustos 2023): 69-78. https://doi.org/10.52881/gsbdergi.1220144.
EndNote Arslan N, Köksal E (01 Ağustos 2023) TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR. Gazi Sağlık Bilimleri Dergisi 8 2 69–78.
IEEE N. Arslan ve E. Köksal, “TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR”, Gazi sağlık bilim. derg, c. 8, sy. 2, ss. 69–78, 2023, doi: 10.52881/gsbdergi.1220144.
ISNAD Arslan, Neslihan - Köksal, Eda. “TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR”. Gazi Sağlık Bilimleri Dergisi 8/2 (Ağustos 2023), 69-78. https://doi.org/10.52881/gsbdergi.1220144.
JAMA Arslan N, Köksal E. TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR. Gazi sağlık bilim. derg. 2023;8:69–78.
MLA Arslan, Neslihan ve Eda Köksal. “TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR”. Gazi Sağlık Bilimleri Dergisi, c. 8, sy. 2, 2023, ss. 69-78, doi:10.52881/gsbdergi.1220144.
Vancouver Arslan N, Köksal E. TELOMER UZUNLUĞU VE BESLENME İLİŞKİSİ: POTANSİYEL MEKANİZMALAR. Gazi sağlık bilim. derg. 2023;8(2):69-78.